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Transport of inertial (finite-size) particles in flows
shows properties typical of compressible fluids, even in
incompressible flows. The most unexpected behavior is
the formation of clusters of particles out of an initially
homogeneous distribution. In the limit the Stokes drag
is very strong, inertial particles recover the motion of La-
grangian tracers and no clustering should be expected1.
However, passive tracers moving on the surface of an in-
compressible flow may lead to the formation of cluster
structures2.
The effect of compressibility on the mixing of La-

grangian tracers is analyzed in chaotic stirred flows. Mix-
ing is studied in terms of the Finite-Time Lyapunov Ex-
ponents (FTLE)3. Mixing and clustering of passive trac-
ers surrounded by Lagrangian coherent structures is ob-
served to increase with compressibility intensity. The
role of the stirring rate and compressibility on mixing
and clustering has been analyzed.
We investigate the effects of compressibility in the pe-

riodically varying double-gyre flow4,5,
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where

f(x, t) = a(t)x2 + b(t)x, (2)

over the domain [0, 2] × [0, 1]. a(t) = u0 sinωt and
b(t) = 1 − 2u0 sinωt. T = 2π/ω and A are the period
and amplitude of the flow, respectively. The periodic
perturbation leads to mixing between the two gyres.
In order to satisfy the continuity equation, ∂i(ρui) = 0,

the spatial dependence of the flow density can be written
as,

ρ(x, y) = ρ0 [1 + ǫ sin(2πx/λ) sin(2πy/λ)] , (3)

where ǫ and λ are the compressibility of the flow and
wavelength, respectively.
We analyze the effects of ǫ and λ on the mixing of

the double-gyre flow in terms of the FTLE fields. Com-
pressibility perturbation wrinkles the LCS in the small-
wavelength limit, whereas for the large wavelengths LCS
are slightly distorted since the entire domain is embedded
in nearly a wavelength (Fig. 1). The density profile favors
some initial clustering of the particles that is broken by
the periodically contracting and expanding of the gyres.
Then particles move within the interstices between LCS.

FIG. 1. Finite-Time Lyapunov Exponent σ for the dou-
ble-gyre flow. λ = 0.4 (left panel) and λ = 0.8 (central
panel). Right panel shows the FTLE for the incompressible
flow model for comparison (ǫ = 0).

Particles belonging to these clusters are characterized
by a negative value of the FTLE, while for an incompress-
ible flow (ǫ = 0) the FTLE values are always positive. For
any wavelength λ of the density field, as ǫ increases, mix-
ing and clustering are enhanced. The mean FTLE and
the variability of the FTLE increase with the compress-
ibility. The increase of variability is due to an increase
in the number of tracers with negative FTLE followed
by an increase in the number of clusters or aggregates
of these particles. Both, the mean and the variability of
the FTLE, decrease with increasing λ. However, while
the number of tracers with negative Lyapunov exponent
hardly it changes with λ, the number of clusters and their
size diminish with increasing λ. In other words, at fixed
ǫ, clusters are smaller but more populated at large values
of λ.
In the considered flow, mixing is strongly affected by

compressibility, and the compressibility field forces a
strong localization of density?,2,6. Formation of clusters
separated by Lagrangian coherent structures has been
analyzed in terms of ǫ. Cluster formation is enhanced
as compressibility increases based on the combination
of particles attracted to areas with large compression
ρ/ρ0 > 1, and detaching of patches of particles from these
initial clusters that wander among the chaotic flow. For
enough large stirring rate the flow is quenched and clus-
ters survive forever for any wave length and compress-
ibility intensity.
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