Finding optimal wavelet bases of cascade processes
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Multiplicative cascade processes!’ are found in a wide
range of different physical systems. In these systems, the
energy or an analogous quantity is transferred from large
to small scales through an independent scale-invariant
factor, thus conferring a statistically self-similar be-
haviour to this quantity. Such a behaviour is usually
referred to as multifractality, because it is related to the
presence of a multifractal structure (a hierarchical com-
bination of fractal sets), which is a very general case of
self-similarity.> This way, the presence of multifractality
allows to recognize the cascade process, either as a real
mechanism or an effective one.* An example of multi-
plicative cascade process is the case of Fully Developed
Turbulence (FDT),> where the cascade transfers the en-
ergy from large to small scales (where it is finally dissipat-
ed) giving rise to its multifractal structure, but such a be-
haviour is quite ubiquitous in nature and in fact has been
observed in systems as diverse as stock market series,?
natural images,® the heliospheric magnetic field, human
gait, heartbeat dynamics,” network traffic, fractures, fire
plumes, as well as many other complex systems.

While studying the cascade process is known to be a
good strategy to obtain the global descriptors of a system
(such as its multifractal characterization), it is possible
to also achieve a local dynamical description, thanks to
the optimal wavelet of the system. The cascade process
with the optimal wavelet describes a local effective dy-
namics that can be used in reconstruction of gaps or lost
information, data compression and time-series forecast.

Wavelet transforms are integral transforms that allow
to separate the details of a signal that are relevant at
different scale levels. In other words, this means that
wavelet transforms are precisely tuned to an adjustable
scale and, for this reason, they are a powerful strategy
to represent cascade processes. In addition, wavelets are
Hilbert bases, i.e., the wavelet transform is invertible,
so that the signal can be completely represented from
the cascade process.® Given a signal s(t), the wavelet
transform at scale r is defined as «..(t) = s ® U,., where
W, (t) = ¥(L) and VU is a certain function called wavelet.

In a cascade process, the wavelet transform follows a
multiplicative relation, i.e., two different scales r, L with
r < L are related through a multiplicative variable:

Qp =Ny /LOL (1)

where 7,./7, and ay, are mutually independent. Here, the
symbol ‘=’ means that both sides equal in distribution,
but not explicitly for each point ¢. The distribution of
/1, is usually used as a global descriptor of the system,
as it determines the cascade process.
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In practical cases, the cascade relation works with al-
most any wavelet W. We propose the existence of an
optimal wavelet for which the cascade relation is geomet-
rically (and not only statistically) verified, meaning that
the equality (1) holds at each point ¢ of the signal.l’
This allows to retrieve the wavelet transform values at
the smaller-scales from the one at the largest (whole-
domain wide) scale, and through the 7, distribution.
Then, inverting the wavelet transform we can reconstruct
the signal and infer missing points or even future ones.
Existence of such a wavelet is not guaranteed, so its op-
timality must be checked a posteriori.

We will introduce a parameter to quantify the degree
of optimality of a certain wavelet when faced a given

dataset: Q = (240 We will prove that Q = \/r/L

ar (t
only with the optiril)al wavelet (biunivocally), while non-
optimal wavelets always lead to higher values of @, the
farther from optimal the higher the value of Q). This pa-
rameter is rather simple and it is proven to be very robust
and little data-demanding, while giving the same rank-
ing in suboptimal wavelets as the mutual information

I ((Z‘Z((tt)),a L(t)) (which proves optimality if zero, but is

little precise when faced to short datasets). Therefore, @
can be used as a cost function whose minimization leads
to the optimal wavelet. Even further, as illustration of
a promising application, we will find the optimal wavelet
of a dataset formed by Spanish IBEX-35 time series and
discuss how this wavelet can improve predictions based
on the multifractal cascade.
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