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Multiplicative cascade processes1,? are found in a wide
range of different physical systems. In these systems, the
energy or an analogous quantity is transferred from large
to small scales through an independent scale-invariant
factor, thus conferring a statistically self-similar be-
haviour to this quantity. Such a behaviour is usually
referred to as multifractality, because it is related to the
presence of a multifractal structure (a hierarchical com-
bination of fractal sets), which is a very general case of
self-similarity.3 This way, the presence of multifractality
allows to recognize the cascade process, either as a real
mechanism or an effective one.4 An example of multi-
plicative cascade process is the case of Fully Developed
Turbulence (FDT),5 where the cascade transfers the en-
ergy from large to small scales (where it is finally dissipat-
ed) giving rise to its multifractal structure, but such a be-
haviour is quite ubiquitous in nature and in fact has been
observed in systems as diverse as stock market series,3
natural images,6 the heliospheric magnetic field, human
gait, heartbeat dynamics,7 network traffic, fractures, fire
plumes, as well as many other complex systems.

While studying the cascade process is known to be a
good strategy to obtain the global descriptors of a system
(such as its multifractal characterization4), it is possible
to also achieve a local dynamical description, thanks to
the optimal wavelet of the system. The cascade process
with the optimal wavelet describes a local effective dy-
namics that can be used in reconstruction of gaps or lost
information, data compression and time-series forecast.

Wavelet transforms are integral transforms that allow
to separate the details of a signal that are relevant at
different scale levels. In other words, this means that
wavelet transforms are precisely tuned to an adjustable
scale and, for this reason, they are a powerful strategy
to represent cascade processes. In addition, wavelets are
Hilbert bases, i.e., the wavelet transform is invertible,
so that the signal can be completely represented from
the cascade process.8 Given a signal s(t), the wavelet
transform at scale r is defined as αr(t) = s ⊗ Ψr, where
Ψr(t) = Ψ( t

r ) and Ψ is a certain function called wavelet.
In a cascade process, the wavelet transform follows a

multiplicative relation, i.e., two different scales r, L with
r < L are related through a multiplicative variable:

αr
.= ηr/LαL (1)

where ηr/L and αL are mutually independent. Here, the
symbol ‘ .=’ means that both sides equal in distribution,
but not explicitly for each point t. The distribution of
ηr/L is usually used as a global descriptor of the system,
as it determines the cascade process.

In practical cases, the cascade relation works with al-
most any wavelet Ψ. We propose the existence of an
optimal wavelet for which the cascade relation is geomet-
rically (and not only statistically) verified, meaning that
the equality (1) holds at each point t of the signal.10
This allows to retrieve the wavelet transform values at
the smaller-scales from the one at the largest (whole-
domain wide) scale, and through the ηr/L distribution.
Then, inverting the wavelet transform we can reconstruct
the signal and infer missing points or even future ones.
Existence of such a wavelet is not guaranteed, so its op-
timality must be checked a posteriori.

We will introduce a parameter to quantify the degree
of optimality of a certain wavelet when faced a given
dataset: Q = 〈 αr(t)

αL(t) 〉. We will prove that Q =
√

r/L

only with the optimal wavelet (biunivocally), while non-
optimal wavelets always lead to higher values of Q, the
farther from optimal the higher the value of Q. This pa-
rameter is rather simple and it is proven to be very robust
and little data-demanding, while giving the same rank-
ing in suboptimal wavelets as the mutual information
I

(
αr(t)
αL(t) , αL(t)

)
(which proves optimality if zero, but is

little precise when faced to short datasets). Therefore, Q
can be used as a cost function whose minimization leads
to the optimal wavelet. Even further, as illustration of
a promising application, we will find the optimal wavelet
of a dataset formed by Spanish IBEX-35 time series and
discuss how this wavelet can improve predictions based
on the multifractal cascade.
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