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The Jarzynski free-energy estimator from the Random Energy Model

Matteo Palassini∗ and Felix Ritort
Departament de F́ısica Fonamental, Universitat de Barcelona, Diagonal 647, E–08028 Barcelona, Spain.

Jarzynski’s nonequilibrium work theorem1 is a general
result that connects nonequilibrium dynamics to equi-
librium thermodynamics. It states that the difference
in free energy ∆F between two equilibrium states of a
system, kept at inverse temperature β = 1/kBT and at
two given values Λ0 and Λ1 of an external control pa-
rameter Λ, satisfies the relation e−β∆F = 〈e−βW〉. W is
the work performed on the system in a nonequilibrium
process in which Λ is varied according to an arbitrary
but fixed protocol {Λ(t), 0 ≤ t ≤ τ}, with Λ(0) = Λ0

and Λ(τ) = Λ1, and the average is over all possible tra-
jectories compatible with the protocol. This provides a
recipe for estimating free-energy changes in small sys-
tems, which has been tested in several experimental and
numerical studies3. Given N measurements Wi following
the protocol Λ(t), the Jarzynski estimator (JE)

∆FN ≡ − 1
β

log
N∑

i=1

e−βWi (1)

tends to ∆F with probability one for N → ∞. For fi-
nite N , ∆FN is biased because the exponential average is
dominated by rare events with W < 0. Controlling ana-
lytically how the bias depends on N and the distribution
of W would be important for practical applications, but
is a difficult mathematical problem.

We derive a scaling limit for the JE based on a mapping
to Derrida’s Random Energy Model2 (REM) (Fig. 1)
and we obtain analytic estimates of the expected bias
〈∆FN 〉−∆F in three different regimes of the scaling pa-
rameter x = (log N)/µ, where µ = 〈W〉−∆F is the mean
dissipated work, for a generic work distributions that de-
cays as p(W) ∼ |W|−α exp−(|W|/σ)δ for W → −∞,
where α > 0, δ > 1 and and σ > 0 is the width of
the left tail of the distribution. The analytical estimates
are based on a vector replica symmetry breaking scheme
(VRSB in Fig.2) for x >> 1 on the asymptotic theo-
ry of extreme value statistics for x << 1 (EV), and for
x ∼ 1 on a generalization of the method used in Ref. 4
to compute the finite-size corrections of the REM (CD).

The combination of these three analytic approaches
agrees well with the expectation value of the bias com-
puted from Monte Carlo generated work values for a wide
range of values of µ and N , ranging from N = 1 to large
N , and for different work distributions. Fig. 2 shows an
example of our results for a Gaussian distribution of the
work and two different values of µ.

Based on these results, we discuss improved free-energy
estimators and the application to the analysis of experi-
mental data.
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Figura 1. Scaling of the expectation value of the bias of
the JE v.s. log(N)/µ, for a Gaussian distribution of the dis-
sipated work and several values of the mean dissipated work
µ. The bias and µ are in units of kBT . The data points
are computed by generating work values by Monte Carlo, the
continuous lines are a guide to the eye. Our analytical cal-
culation predicts the data must cross at x = 1 and take the
value log(2) (horizontal line in the main figure). The dashed
line in the inset represents the scaling limit which corresponds
to the thermodynamic limit of the Random Energy Model.
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Figura 2. Comparison of the analytical estimates of the
bias for two values of µ. The data points represents the same
Monte Carlo data as in Fig.1. The lines display the analytical
estimates in three different regimes of x (see main text).
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