Dynamics of 3D Thin Films: from hydrophilic to super-hydrophobic substrates

R. Ledesma-Aguilar*, I. Pagonabarraga, and A. Hernández-Machado

Departament de Estructura i Constituents de la Matèria

Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona

Contact line dynamics are essential to many interesting dynamic wetting problems^{1,2}, that range from the surprising climbing of partially wetting drops in inclined vibrating substrates³ to linear or spin coating of surfaces^{4,5}, mono-disperse drop formation⁶ and in-drop mixing in micro-channels^{7,8}. An exciting and relatively unexplored field is that of fluid flow in super-hydrophobic substrates, where the equilibrium contact angle exceeds 120°.

Here we study the motion of three-dimensional thin films spreading in dry inclined substrates under the action of gravity. Using lattice-Boltzmann simulations, we study the stability of the free surface in different substrates, depending on their wettability. Wetting properties in our simulations are introduced via a surface free energy, which allows us to consider substrates that range from hydrophilic to super-hydrophobic. We find that the stability of the free surface is strongly affected by the substrate wettability. * rodrigo@ecm.ub.es

- ¹ P.-G. de Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls and Waves, Springer-Verlag, 2003
- ² P. de Gennes, Wetting: statics and dynamics, Rev. Mod. Phys. **57**, 827 (1985).
- ³ P. Brunet, J. Eggers, and R.D. Deegan, Vibration induced climbing drops, Phys. Rev. Lett. **99**, 144501 (2007).
- ⁴ F. Melo, J.F. Joanny, and S. Fauve, Fingering instability of spinning drops, Phys. Rev. Lett. **63**, 1958 (1989).
- ⁵ J.R. de Bruyn, Growth of fingers at a driven three-phase contact line, Phys. Rev. A 46, R4500 (1992).
- ⁶ O. Kuksenok, D. Jasnow, J. Yeomans, and C. Balazs, Periodic droplet formation in chemically patterned microchannels, Phys. Rev. Lett. **91**, 108303 (2003).
- ⁷ H. Song, J. Tice, and F. Ismagilov, A microfluidic system for controlling reaction networks in time, Angew. Chem. Int. Ed. **42**, 767 (2003).
- ⁸ K. Hosokawa, T. Fujii, and I. Endo, Handling of picoliter liquid samples in a poly(dimethylsiloxilane)-based microfluidic device, Anal. Chem. **71**, 4781 (1999).