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In this contribution we will analyze the calculation of
interfacial tensions using computer simulation methods.
We will focus the discussion on the case of interfaces be-
tween vapor and liquid phases (at equilibrium) of one
component systems. However, most of the ideas and con-
clusions can be applied to other types of interfaces.

The calculation of the surface tensions of liquid-vapor
interfaces can be carried out using different methods.1
Most of the techniques can be classified in two groups:
(a) Simulations of systems with explicit interfaces, and
(b) Binder procedures2,3.

Explicit Interfaces: The simulations are carried out
(for one component systems) in the canonical ensemble
using periodic boundary conditions(PBC). The density is
taken as an intermediate value between those of the va-
por and liquid phases at equilibrium at the corresponding
temperature. The simulation box is chosen to be elon-
gated in one direction, and the interfaces are built (and
expected to stay) perpendicular to that direction. The
surface tension, γ, is computed as the derivative of the
Helmholtz energy function with respect to the surface
area at constant volume.

These procedures are quite straightforward, but some
care has to be taken to avoid spurious finite-size effects4,5.
On the other hand, these methods can not be used to
compute interfacial tensions of lattice models.

Binder Procedures: For the liquid-vapor case, the
usual approach is to use a grand-canonical-like calcula-
tion (with PBC and eventually with elongated boxes) to
compute the Helmholtz energy function, A(N |V, T ), at
given conditions of volume, V , and temperature, T , for
different values of the number of particles N . With the
results of A(N |V, T ) it is possible to determine the con-
ditions of liquid-vapor equilibrium (LVE) (i.e. the values
of the chemical potential, µe, and pressure pe of the tran-
sition), and then to extract the surface tension by con-
sidering that the grand potential, Ωe(N) ≡ A(N)−Nµe,
is expected to fulfill, if two phases coexist, Ωe(N) =
−peV + γA(N), where A(N) is the interfacial area.

Within this framework the interfacial tension is not
computed as a derivative but as a difference between the
values of Ωe at coexistence situations and those of the
pure phases. This fact alleviates most of the problems

with finite-size behavior that appear in the differential
methods. Nevertheless, Binder methods require for most
cases non-standard simulation methods3,6 to get reliable
results for A(N,V, T ) in the two-phase region. In fact γ is
often computed as a by-product of the finite-size scaling
analysis of the LVE close to the critical point.

Finite-size effects: In the poster, we will illustrate
the facts commented above showing results from both
kinds of techniques applied to the LVE of a Lennard-
Jones fluid. Special attention will be paid to the depen-
dence of the results with the different system lengths.

Thermodynamic Integration techniques: Given
the non-monotonic dependence of γ with the interfacial
area that appears in the explicit interface methods4,5 (at
least for small systems) we could think on the possibili-
ty of using Thermodynamic Integration (TI) procedures
to compute γ for liquid-vapor interfaces, with the aim
of keeping the relative simplicity of the explicit interface
simulation procedures while using a non-differential route
to compute γ. TI methods have been proposed to com-
pute the interfacial free energy of systems near a hard
wall7.

In our case the TI is build up to go from the system di-
vided into two non interacting phases to the system with
the two phases connected through the corresponding in-
terface. Some preliminary results using TI on lattice gas
models will be shown, and compared with those attained
using the Binder method. Finally, possible ways of adapt-
ing TI techniques to compute γ for atomistic models will
be discussed.
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