A WAVELET TECHNIQUE FOR THE REPRESENTATION OF MUL-
TIFRACTAL DATA AS AN EXPLICIT TURBULENT CASCADE:
APPLICATION TO TIME SERIES

Oriol Pont', Antonio Turiel®> and Conrad Pérez'

(1) Grup de Sistemes Complexos. Departament de Fisica Fonamental. Universitat
de Barcelona. Diagonal, 647. Barcelona 08028.

(2) Institut de Ciencies del Mar. Passeig Maritim de la Barceloneta, 37-49.
Barcelona 08003.

Multifractal systems are non-linear physical systems with some strong statistical
invariances such as translational and scale invariance. The classical characteriza-
tion of this kaleidoscopic scale invariance has been made through the Canonical
Multifractal Formalism (CMF), which is a purely statistical approach. In CMF,
the scale-invariant basic quantities of interest are the structure functions of order
p (denoted by S, (r)) of an appropriate intensive variable with variable scale scope
r. For multifractal systems the structure functions follow power-laws: S, (r) o r¢?
where the set of canonical exponents (, characterize the scaling properties of the
system.

It is possible to establish a link between statistics and geometry. Parisi and Frisch
[1] proved that the statistical scale invariance could be recognized as the sign of an
inner organization of the system in a hierarchy of fractal manifolds. The explicit
decomposition of any given experimental signal into the associated critical man-
ifolds requires the use of singularity analysis [2] and the framework provided by
the Microcanonical Multifractal Formalism (uCMF) [3, 4]. The application of the
#CMF to experimental data of different sources has allowed to widen and deepen
the study of many different physical systems (natural images [2], heart-beat dy-
namics [5], econometric time-series [6], etc) and, in addition, the theory has gained
conceptual depth. What, in the beginning, was a statistical description adapted to
the peculiarities of Fully Developed Turbulence has proved to have deep roots in
the study of non-linear, scale invariant systems.

In this context an open problem consists in rendering the connection among geom-
etry and statistics explicit. One of the best known manifestations of CFM, and also
the closest to an explicit geometrical realization of multifractal processes, concern
the existence of multiplicative cascades. Let €.(Z) be the appropriate, intensive
variable of scope r which allows to unveil the multifractal structure of the signal
(for instance in the case of turbulent fluids, €,(%) stands for the local energy dis-
sipation on a ball of radius r centered around ¥). Given two scales r, L such that
r < L, the multiplicative cascade takes the form ¢, = m,,;, €r, where the sign
“=” means that this equality cannot be considered to hold at any point Z, but only
in a statistical sense (that is, both sides are statistically equally distributed). The
variable 7, ,1,, which characterize the cascade process, is taken independent from ez,
and does not depend on each scale scope (r and L) separately but on their ratio,



r/L. If for any 0 < x < 1 the p-moments of 7, scale as (p, (nk) = k7 it trivially
follows that (e£) o r¢ retrieving CMF.

In this work, we take these ideas as a starting point to propose a explicit rep-
resentation of multifractal signals in an optimal wavelet basis for which the cas-
cade process is geometrically (and not only statistically) implemented. Namely,
if the wavelet projection of the signal s on the wavelet ¥ at the scale r and
the point # is denoted by Tws(Z,r), what we search is a wavelet ® such that
Tos(Z,7) = n,/.(%F) Tas(Z, L), where now the equality holds for any point & and
scales r, L. This requirement is too exigent and in principle the existence of such
“optimal” ® cannot be granted; however, if we restrict our choice of scales and posi-
tion to those of a dyadic decomposition (for instance, in a Quadrature Mirror Filter
representation), an explicit constructive formula for ®, derived from a “learning”
sample dataset, arises [7]. This formula proves unicity but not existence, so the
“optimality” of the wavelet should be checked in each case. Interestingly enough,
this formula makes a link with some constructive models of multifractals [8, 9].
We will concentrate our work on the study of multifractal time-series of different
nature. Some prospects on future applications will be also presented.
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