Controlled replication of noise-sustained structures through synchronization R. Deza^{1,3}, G. Izús^{1,2}, and L. Bernal^{1,2} - (1) Departamento de Física, FCEyN, Universidad Nacional de Mar del Plata Deán Funes 3350, 7600 Mar del Plata, Argentina. - (2) Member of CONICET, Argentina. - (3) e-mail: deza@mdp.edu.ar We consider two identical 1D autocatalytic systems with Gray–Scott (GS) kinetics, driven towards identical convectively unstable regimes. Their respective A–components are submitted to spatiotemporal Gaussian white noises with variances σ_1 and σ_2 . Noise-sustained structures (NSS) develop in such a situation, as shown in [1]. When coupled in a master–slave configuration, in such a way that the B–component of the slave system 2 senses the difference between its concentration and that of the master system 1, a numerical simulation reveals that—even when perturbed by noise—system 2 replicates the NSS arising in system 1 to a very high degree of precision, as expressed by several measures of synchronization. One of these measures is the deviation field $\beta = b_1 - b_2$, exhibited in the figure—in the same scale as b_1 —for a snapshot of b_1 . Numerous applications for this effect can thus be envisioned. [1] B. von Haeften and G. Izús, Phys. Rev. E 67, 056207 (2003).